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ABSTRACT

The state-vector of a planetary artificial satellite
is determined by using Earth-based range-rate measurements. The
satellite velocity component in the direction from the planet-
center to Earth-center instead of that from the satellite to an
observation station is computed in a theoretical model. The
relatively simple least squares estimation criterion thus ob-
tained for the case of a planet at infinite distance facilitates
the comparison study of numerical methods of solving a system of
non-linear equations.

Simulation results obtained by programming in double
precision show that the longitude of the ascending node of a
planetary satellite can be determined to prescribed accuracy
within a few days of tracking.

The comparison study is made among (1) classical
differential correction method, (2) Newton-Raphson method, (3)
generalized differential correction method, and (4) generalized
Newton~Raphson method. It indicates that the new generalized
differential correction method has a convergence range of
initial estimate wider than the other methcds. The extension
in the convergence range of initialbestimate enhances the suc-
cess of obtaining a preliminary state-vector in a short tracking
period and is particularly important in planetary missions.

The effects of perturbations of non-central forces on
the satellite can be incorporated in the formulation without

resorting to numerical integration.
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DETERMINATION OF ORBITS OF PLANETARY
ARTIFICIAL SATELLITES AND PLANETARY GRAVITATIONAL FIELDS

I. INTRODUCTION

Orbit determination is considered to mean, for a pre-
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scribed mathematical model, the statisticail
trajectory from noisy observation data. In principle, the
general methods of orbit determination and gravitational field
deduction are analogous whether the spacecraft to be tracked is
a terrestrial, lunar, planetary, or solar satellite. However,
the availlability of observational data 1s strongly dependent on
the particular tracking geometry involved, and the determina-
tion of a planetary satellite orbit is inherently more compli-
cated than that of a terrestrial or lunar satellite orbit. TFor
example, the preliminary state-vector of an Earth satellife can
be approximately established by a number of observation sta-
tions, each located at a different latitude and making range-
rate measurements or a combination of range and angular measure-
ments in a relatively short tracking interval, say a few
revolutions of the Earth satellite. The situation is quite
different for Earth-based tracking of a lunar or planetary
satellite. Existing tracking facilities are capable of measur-
ing angular position with an optimistic one-sigma uncertainty
of 0.01°, which corresponds to about 65 km and 12,000 km,
respectively, at the lunar distance and at Mars distances dur-
ing oppositions. Accordingly, at such large distances the
uncertainty of angular measurements is not compatible with the
conservative one-sigma uncertainties of 10_u m/sec (S-band at
60-second sample rate) for range-rate and 10 m (light-second)

for range.
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Because of the slow relative "rotational" motion be-
tween the Earth and another planet, the orientation plane of
a planetary satellite as viewed from an observation station
on the Earth does not change very much within a few revolu-
tions of a planetary satellite. Viewing from stations located
at different sites on the Earth does not improve the "resolu-
tion" because the angular separation is negligible. In fact
this 1s why the spectroscopic binary star technique fails to
yield information on the longitude of the ascending node. To
circumvent the difficulty, the tracking interval must be ex-
tended so that data points are spaced far enough apart in time
and in position to ensure significant uncorrelated measure-
ments. An alternative is to place another observation station
far from the Earth station.

In this paper the planetary satellite velocity com-
ponent in the direction from the center of the planet to the
center of the Earth instead of that in the conventional direc-
tion from the satellite to an observation station on the Earth
is computed in a mathematical model. The least squares esti-
mation criterion obtained this way is relatively simple for
the case of a planet assumed at infinite distance from the
Farth. This simplification facllitates comparison studilies of
numerical methods of solving a system of highly nonlinear
equations. For the actual case of finite distance between
the Earth and a planet, the least squares estimation criterion
thus obtained is slightly different from that of the conven-
tional approach. Its implications are discussed in Section
VI.

The classical differential correction method of
orbit determination requires an initial state-vector estimate
sufficiently close to the desired solution that the iterative




-. t

BELLCOMM, INC. -3 -

process of differential correction will converge to the solu-
tion. The constraint on the initial estimate in the classical
differential correction method is a consequence of lineariza-
tion of the highly nonlinear dynamical equations of motion of
the spacecraft. For terrestrial or lunar satellite orbit
determination, the present model of the Earth-Moon system and
our present tracking capability are accurate enough to supply
an initial state-vector estimate within the convergence range
of the classical differential correction process. However,
because of imperfect mathematical models of the planetary
systems, uncertainties in physical constants, and possible
malfunction in <the final orbit injection mechanism, initial
estimates of the state-vector for a planetary satellite may
not be within the range of convergence. Accordingly, it is
desirable to devise a different or complementary orbit deter-
mination program that has a wider convergence range of initial
estimate than the classical differential correction method.
The orbit determination program presented herein is an attempt
in that direction. Comparison studies indicate that the new
numerical method of solving a system of nonlinear equations
indeed widens the convergence range of initial estimate.

Simulation results show that the state-vector of a
planetary satellite can be determined to prescribed accuracy
within a few days of tracking. The effects of perturbations
of non-central forces on the satellite can be incorporated
in the formulation without resorting to numerical integra-
tion.

The paper is intended to present a self-contained
study of the orbit determination of an artificial satellite.
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1I. FORMULATION OF MATHEMATICAL MODEL

Consider a unit sphere with center P at the center of
a planet. Let r and é be, respectively, the instantaneous
radius vector and velocity vector of a satellite relative to
the dynamical center P of the planet. Let the orthogonal
right handed coordinate system XYZ with its origin at P be the
non-rotating "inertial" reference selected at an initial time
of tracking to. At £ = to the Y-axls 1s chosen to lie in the
orbital plane of the planet, the -Z-axis to point at the center
of the Earth, and the ¥X-axis to be the principal axis pointing
in a northerly direction as shown in Figure 1. A second ortho-
gonal coordinate system x'y'z' with its origin at P is attached
to the rotating line connecting the centers of the planet and
the Earth so that at t = to the two coordinate systems coincide.
The plane x'y' is the so-called plane-of-the-sky which is
always perpendicular to the line joining the centers of the
Earth and the planet.

With respect to the "inertial" plane XY (the plane-
of-the-sky at t = to) the orientation of the orbital plane is
uniquely defined as shown in Figure 1 by the longitude of the
ascending node Q, the inclination i, and the argument of peri-

planet w. The ranges of these three angular elements are:
0 < <21 3 0 <1 <wm 53 0 < w<2n

The satellite velocity component in the direction of the planet-
Earth line can be expressed in terms of those angles. Let r,
the radius vector of the satellite with respect to the planet

be represented as:

r=rr , (1)
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where r is the magnitude of the radius vector r, and

r is the unit vector in the direction of r.

The veloclty vector therefore is:

r=fr+riz = |zll/e (2)
where f is the rate of change of the true anomaly f,

is the unit vector perpendicular to the radius

[=>
[

vector r and is in the direction of motion,
Hz]' is the Euclidean norm of r, and

¢ is the angle between r and i.

It can be shown that for a Keplerian orbit

. 1/2
r = [———E—E—] e sinf s (3)
a(l-e”)
and
. 1/2
rf = [———3—5—] (1+e cosf) , ()
a(l-e”)

where "a is the semi-major axis of the satellite orbit,

e 1s the eccentricity of the orbital ellipse, and

U is the gravitational parameter.
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Accordingly, equation (2) takes the form

5 q1/2
i - {u(1+2e cosf+e )] l/tan—l(l+e cosfl) | (5)

a(l-e2) e sinf

The components of the velocity vector r in the "inertial"

frame XYZ at t = to are:

é-g = ||r|llcos? cos(wtf+e) - sin@ sin(w+f+e¢)cosi] R
é-i = ||r|l[sine cos(w+f+e) + cosq sin(w+f+d)cosi] ,
r-z = ||| sin(w+f+e)sini . (6)

When t »> to, the orientation of the Earth relative
to the planet changes in such a way that, using the -Z-axis
and the YZ-plane as references, the -z'-axis points toward the
center of the Earth in a direction defined by the planetocen-
tric right ascension o and declination 6. The values of a and
§ can be computed from the relative motions of the Earth and
planet with the aid of the ephemerides. The corresponding
orientation change of the x'y'-plane due to that of the -z'-
axis can be obtained from the following trigonometric relations
in terms of Euler angles Q', i', and w' with respect to the

XY-plane:

i' = cos—l(cosa cosés) s (7)
..=1 siné
L frsSeiabe
Q sin ETEl . (8)
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For vanishing declination 6, Q' vanishes and the inclination 1i'
is equal to the right-ascension, as they should. In general,
i', @', or a, 6 are functions of time. (Fig. 1 shows the case

corresponding to Q' = 0.)

The transformation matrix N that converts the quanti-

ties in the XYZ frame into the x'y'z' frame is:

— '
cosf'cosw'-sing'sinw'cosi' sinQ'cosw'+cos'sinw'cosi'! sinw'sini'

N =|-cos'sinp'-sinQ'cosw'cosi' ~sinQ'sinw'+cosQ'cosy'cosi' coswp'sini'

_§in9'sini' -cosQ'sini' cosi! _
(9)

The component of the satellite velocity in the direction of

the -z'-axis i1s the radial velocity and is represented by:

1/2

~ 2
«(-z') = —[“(1+2e co;f+e )] (sini cosi'-cosQ cosi sini' cosq!
a(l-e”)

5

- 8inQ cosi sini' sinQ')sin(w+f+¢)
]

(cosQ sini' sin@' - sin®@ sini' cosQ')cos(w+f+¢) .
{

J
(10)

+

The components normal to é' can also be obtained. By elimina-

ting ¢, equation (10) takes the form:
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. ~ 1/2 r
re(-z') = - ——‘JLTT_ ‘[sini cosi'
a(l-e”)
-~ (cosQ cosQ' + sin@ sinQ')cosi sini'J[cos(w+f) + e cosw]
+ [(sinQ cosq' - cosq sin')sini'J{sin(w+l) + e sinwjf= H.

(11)

For convenience we let the right side of equation (11) be desig-
nated as H, the computed value of the velocity component in the
-z' direction, and the left side, the corresponding observed
value. For i' = 0 and Q' = 0, equation (11) reduces exactly to
the solution of the classical spectroscopic binary star tech-

nique [1]:

3.

“ 1/2
c(-2') = —[—*—E—§;] sinilcos(w+f) + e cosw] . (12)
a(l-e®)

e

With sufficient observational data in Doppler form,
estimates of the state-vector (a, e, 1, 2, 1, w) and the
planet gravitational parameter u can be obtained from equation

(11) with the aid of Kepler's equation

1/2 1/2
\1/2 (t=1) = si —1R1—é% sinf (l—e2) sinf] |
-t/ = s8in L l+e cosf J‘ € l+e cosf

m = -t
ad |

(13)

where m is the mean anomaly and t is the time of periplanet
passage. It 1s seen that the gravitational parameter u is an
integral part of parameter estimation processes in equation
(11).
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IIT. OBSERVED AND KNOWN QUANTITIES

Equation (11) as it stands is valid only for obser-
vations taken at the center of a non-rotating Earth, which is
assumed at an infinite distance from a planet. In actual
situations, however, observation stations are on the surface

>
of the rotating Earth, which 1s at a variable finite distance

from a planet. To take account of these effects, equation
(11) has to be generalized.

In Figure 2, points SO, E, and P are, respectively,
the centers of the Sun, Earth, and planet. S is the position
of a planetary satellite and 0 is the position of the observer
on the surface of the Earth. Vectorially the planetary satel-

lite radius vector r can be expressed as:

r=D+R+p , (14)

where D is the vector between the centers of the Earth

and the planet,

R is the vector between the center of the Earth

and the observer at 0O, and

p 1s the vector between the satellite S and the

observer at O.

The component of é in the planet-Earth direction can be decom-

posed as

pe(-z') = (-Dez' - Rez' - 5ez') . (15)
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For general cases the three terms on the right side of equa-
tion (15) can be obtained separately. The terms 3-5' and Q-g

A
.

are known quantities. Re¢z is due to the diurnal motion of
the Earth observer along the Earth-planet 1line and can be
calculated, using data of known accuracy. The distance D
between the Earth and planet is known only in terms of the
astronomical unit, which has an uncertainty in terms of
absolute distance. The magnitude of the term Q can be calcu-

lated as below from the vector relations in Figure 2
D=4 - 4p = q(a.u.)&E - s(a.u.)_%_P . (16)

where &E and £P are, respectively, the vectors between the
centers of the Sun SO and the earth E and between

the centers of the Sun and the planet P,

~

o and 2,

the direction of 1y and 2p>s and

are, respectively, the unit vectors in

q and s are, respectively, the distances in a.u.
from the sun to the Earth and to the planet.

Taking the time derivative of equation (16), we have

A « " . ~

D = (a.u.)(agp + @ GE&El - S&p - S GP&PL) . (17

where GP and 5> generally not in the same plane, are,

. .
tween the vernal equinox

respectively, the angles
y and %, and g, and
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~

&P and &E are, respectively, the unit vectors
4 4
perpendicular to &P and &E and in the directions

of motion of the planet and the Earth.

The term Q-g' then is

(a.u.)[d cos(&E,g') - q éE sin(&E,g')

O
*

([N
1l

S cos(Lp,z') + s éP Sin(&P,g')j‘ (18)

All the quantities within the bracket of equation (18) can be

obtained from the ephemerides.

In tracking a planetary satellite from the Earth,
the periodic Doppler shift curve with zero crossings (at
instances when the satellite velocity vector is perpendicular
to the z'-axis) will have maximum amplitude when its orbit is
viewed edgewise (i near %) and approach vanishing amplitude
when viewed transversely (i near zero). On the other hand,
Q-é is the same whether the orbit is viewed edgewise or
transversely. The implication is that the observational data
from orbits viewed edgewise are affected much less by the
uncertainty in a.u. than those viewed tfransversely. From
this point of view we can conveniently consider the uncertain-
ty in a.u. as a biased noise which can be removed by curve
fitting processes after acquisition of sufficient data.

The third term é-é' in equation (15) is the quantity

to be observed and can be decomposed by letting
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g = pp then é = {33 + pépgl s (19)
where 6 and p are, respectively, the observed range-rate

and range between the observer and the satellite,

e, 1s the unit vector perpendicular to p and is in

the direction of motion, and

ép 1s the rate at which p changes its direction.

Taking the component of é in the planet-Earth direction yields:

—écg’ = _6&.57 - peg_p—l.-z_' = _5 COS(E,E') - pép Sin(g,g_')

(20)

Equation (20) indicates that complete evaluation of the term
é-é for a finite Earth-planet requires three simultaneous
measurements: (a) range-rate, (b) range, and (c¢) angular
position of the satellite. For an infinite Earth-planet
distance equation (20) can be evaluated by range-rate measure-
ments alone. For these two special cases the state-vector
and u can be determined from equations (11) and (13) with
relative ease by any curve fitting procedure, say, the
welghted least squares method for an over-determined

system. For simplicity in carrylng out simulations and
comparison studlies among methods of solution of a system of
nonlinear equations, the case of infinite distance will be

used in Sections IV and V.
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For general cases of practical interest the distance 1s
always finite, although large, and measurements involving only
range-rate are preferred. Then equation (20) appears in a mixed
form of a measured quantity and quantities which are functions of
the state-vector to be estimated. The mixed form does not present
any difficulty for statistical estimation of the state-vector. The
estimation criterion for general cases of mixed form in equation
(20) will be developed and simulations described in Section VI.

To avoid unknown refraction effects of the planetary atmo-
sphere and ionosphere only those observational data which do not
involve atmospheric and ionospheric penetration should be used.

IV. SOLUTIONS OF THE NONLINEAR EQUATIONS

The solution of the system of transcendental equations
(11) and (13) requires a minimum of seven simultaneous measure-
ments of range-rate to determine seven unknowns. For an over-
determined system, methods such as the weighted least squares are
appropriate and can yield a more accurate estimate of the solution.
Analytic methods for the solution of such a highly nonlinear system
of equations are usually very difficult, therefore, numerical
methods suitable for digital computers are of interest.

The estimation criterion described here is the weighted
least squares method that yields a "best fit" to minimize the
residuals in the measurements. Thus, the state-vector (including
u from here on) that minimizes the weighted sum of the squares of
the differences between the measurements and corresponding com-
puted theoretical values constitutes the solution to the orbit
determination problem in a statistical sense. Suppose a sequence
of measurements Ml’Mg’M3""Mn is given. For compactness this
sequence will be represented by the column vector M and the state-
vector (a,e,t,Q,i,w,u), by the column vector variable X. The com-
puted values Hl,H2,H3,---Hn corresponding to M will be denoted by
the column vector H(X). The covariance matrix of M 1s given by

W = E{[M—E{M}][M-E{M}]T} ) (21)
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where E{M} means the expected value of M and T stands for
transposition. For uncorrelated measurement errors in M, W is

a diagonal matrix. The gquadratic form to be minimized is the

scalar function

Q= [M-H(X) 1w immer(x)] . (22)

where [M-H(X)] is the so-called residuals in measurements and
W_1 the weighting matrix. Under the assumption that the com-
ponents of M obey a joint n-dimensional normal distribution
with covariance matrix W, the value of X that minimizes equa-
tion (22) is the maximum likelihood estimate of the true value
of the parameters. Now, for the nonlinear function H(X) the

quadratic form Q 1s an extreme with respect to X if the vector

function

F(X) = [3_21_}((_@_]11 w‘l[M-H(X)] = 0 . (23)

where [agéx) is a rectangular Jacobian matrix.
The state-vector X that (i) satisfies equation (23), (ii) renders

%% a positive definite, and (i1iii) yields the absolute minimum Q
in equation (22), is the desired solution. In fact (iii) is the
necessary and sufficient condition for the desired solution. To
search for the desired solution by numerical methods, there are

two possible mathematical approaches:

1. to solve the vector function F(X) = 0 of equation (23)
and
2. to minimize the scalar function Q(X) of equation (22)
directly.
The following methods A, B, and C use the first approach and

method D uses the second approach.
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A. Classical Differential Correction Method

A first order Taylor series expansion of H(X) about

an initial estimate XO yields

dH(X

H(X) = H(X_ ) + “3?9“ [x-%_] ) (o)

Substitution of equation (24) into equation (23) gives the
classical differential correction formula suitable for itera-

tion as

_ T -1_-=1
X = X  + (T W ~J] F(XO) , (25)

where J is a rectangular matrix symbollzed by

aH(XO)

J = T . (26)

Solution of equation (25) exists only when the so-called normal

matrix [JTw_lJ] is non-singular.

The covariance matrix of errors in X in this case is

1} : (27)

- & {0t (X )F (X )T (W H171”

L

The square roots of the diagonal elements of ¢ yield the asso-

ciated mean error of each component of the state-vector. Also,

ield the correlations bhe-

E ol aval 4+ S ~
Cac matrix £ can be norm

(@]

tween the components by dividing the off-diagonal elements by
the square root of the product of the corresponding diagonal

elements.
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The differential correction method requires an initial
estimate XO sufficiently close to the desired solution that the
iterative procedure will converge to the solution. The con-
straint on the initial estimate is a consequence of the
linearization of the highly nonlinear dynamical equations of
motion.

B. Newton-Raphson Method

Following the Newton-Raphson method of unity dimension,
we have the solution in linear predictor form for the multi-

dimensional case of equation (23) as

aF(XO)
X = XO _[—_—BX——] F(XO) . (28)

For one-dimensional cases the error in the (n+1)th approximation
to the solution is proportional to the square of the error in
the nth-approximation, and if the initial estimate is suffi-
ciently close to the true solution, convergence is assured. A
similar discussion of the convergence property for the multi-
dimensional equation (28) is fairly involved but is covered in

any standard numerical analysis text.

The explicit form of the Jacobian matrix can be

obtained by differentiating equation (23) and is

2 {1 - e ) ) (29

where (M-H)D represents the nxn square matrix with vanishing
elements except the diagonal terms which are the corresponding
elements of the column matrix (M-H). In summation index form

equation (29) can be written as

@l
N"lj

2
F|  _ -1 i) 2] o5y }
(S‘X)J.k = “L; (W )Jk[(gx—;)(—éx_k + (Mg -Hy) ool B (30)




IR NN N W N N G N B AN B N e G R N aw ey W

BELLCOMM, INC. - 17 -

Although comparison shows that the differential
correction method of equation (25) can be obtained from the
Newton-Raphson method of equations (28) and (29) by neglec-
ting the second partial derivative terms in equation (29),
the mathematical implication is not so simple and will be

explored under method D.

C. Generalized Newton-Raphson Method

The technique is an adaptation of an idea advanced
by D. F. Davidenko[2] for solving a system of nonlinear equa-
tions. Convergence theorems and existence of solutions theorems

will not be included in this paper.

Let G(X) be a vector function of a vector variable X,
for which it is desired to find a value of X such that G(X) is
zero. Assume X is a function of a scalar A and define a new

vector function
¢(A) = G[X(A)] ~ (1-1)G[X(0)] » (31)

where X(0) is an arbitrary point. The function ¢(A) satisfies
the conditions ¢(0) 0 and ¢(1) = G[X(1)]. The function ¢(1r)
is zero if and only if %% is zero. Differentiating equation

(31) gives

3G dX .
= o= 55+ 6[X(0)] (32)

Q-:IQ
>le-

daXx
The wvalues of 5N

curve of the form

such that g% is zero describe an integral
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X(A) = X(0) + o 9 (33)

such that G[X(A)] - (1-A)G[X(0)] is zero. The vector X(1) is a
solution to the equation G(X) = 0. We apply this technique to
the vector function F(X) = 0 of equation (23). Substituting
F(X) for G(X) in equation (32) and equating %% to zero gives

O\ i

_ 3F ax _
0=t F[X(0)] (34)

A unique solution for g% exists if %%-is non-singular. Thus

-1

g%h(g_i) FLX(0)] (35)
and
1
-1
x(1) = x(0) - (2] rrxco)ian . (36)
0

By using a first order integration technique, a recursive formula

may be defined as

-1

_ 5F
Xipp = Xy - h(-ﬁ F(X,) . (37)

Comparison of equations (28) and (37) shows that the Newton-
Raphson method is a special case of equation (37) when the

step-size variable h = 1.
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The integration technique used in equation (36) is
the variable step-size, fourth order Adam-Moulton predictor-
corrector method. Since this technique is not self-starting,
a fourth order Runge-Kutta process is used for starting
values. Variable step-size integration technique enables the
integration path to follow smoothly alo

Both the Newton-Raphson and generalized Newton-
Raphson method require evaluation of the Jacobian matrix %%
involving both the first and second partial derivatives of
the function H as shown in equation (29). These evaluations

are tedious, but possible, and are shown in Appendix I.

D. Generalized Differential Correction Method

Method C described in the previous section reduces
the problem of solving for the zeros of a system of equa-
tions to that of integrating a set of first order differential
equations. Application of the same technique to minimizing
the quadratic form Q(X) of equation (22) directly is based on
the condition that, for uncorrupted measurements, the quad-
ratic form Q(X) is zero if and only if the vector [M-H(X)]
is zero. Mathematically it implies that the absolute minimum
of the quadratic function Q(X) is zero. The application
to actual, or corrupted, measurements will be covered later.

To solve the vector equation [M-H(X)] = 0, we
substitute [M-H(X)] for G(X) in equation (32) and equate %%

to zero. The resulting equation is

_ 3H 4%
0= -4t [M-H(X(0))] . (38)
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The matrix %% is rectangular if the number of observations is
greater than the number of parameters. It can be shown that
there exists a unique solution to equation (38) if the rank of

%% is equal to the number of parameters. To solve for %% , we
T T
o 1x (28] 3
premultiply equation (38) by (aX . The matrix =% -x 1s non-
singular, hence
-1
T T :
ax _ [jem|" aul o [3HE)Y g
T {(ax) ax} (ax [-H(X(0)) T (39)
The solution to Q(X) = 0 is
e T am] o)
x(1) = x(o) + | |[E] 2 ) ko)) an . (40)
0

As before, a recursive formula may be defined by

-1

(EE)T [M-E(X)] . (41)

| .-
_ o1\ oH
Xip1 = %1 - h[lﬁ ax} 3X

If the step-size h 1s unity, the formula is the clas-

slcal differential correction technique.

For any choice of initial estimate Xo’ equation (40)
converges to a minimum of Q(X) whether or not a solution to
[M=H(X)] = 0 exists. This can be explained by the integral
solution curve defined by equation (33). The solution curve
falls to exist when %% = 0. However, %% = 0 implies %% = 0,
which 1s necessary for a minimum.

In actual observations, measurements are always cor-
rupted and the vector equation [M-H(X)] is nonvanishing at the
absolute minimum. This corresponds to the fact that the
absolute minimum of the quadratic function Q(X) for uncorrupted
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measurements has been shifted and Q(X) = 0 has no solution for
corrupted measurements. However, equation (40) still can be

used to search for a minimum of Q(X) by the argument in the

previous paragraph.

The pattern by which the parameter X seeks the de-
sired X depends on the sign of the function and the sign of its
first derivative at an initial estimate XO. Since both the
Newton-Raphson method and generalized Newton-Raphson method
search for zeros of F(X), the desired X for which F(X) = 0
will be tracked only if the initial estimate XO 1s such that

-1
%%) i1s non-singular between XO and the desired X. On the
the other hand, the generalized differential correction method
searches for a minimum of a positive definite function Q(X).
The desired X for which Q(X) is a minimum can be tracked if the
T -1
initial estimate X, is such that |[2%) 22

oH
3
between XO and the desired X, for which gX = 0.

Since F(X) is the first derivative of Q(X), the
independent variable distance between the neighboring extremes

of Q(X) is in general wider than that between the F(X) = 0 and

is non-singular

a neighboring F(X) extreme, at least in a one-dimensional
analogy. Accordingly, we infer that both the generalized and
the classical differential correction methods can yleld a con-
vergence range of initial estimate XO wider than both the
Newton-Raphson and generalized Newton-Raphson methods. The
variable step-size integration in the generalized differential
correction method removes the constraint of linearization of
the classical differential correction method, and therefore,
the generalized differential correction method has a wider
convergence range of initial estimate X than the classical

differential correction method.
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E. Other Methods

A recent survey of other numerical methods is given by

(3]

application, they are not discussed here.

Spang. Since these methods are not suitable for the present

V. SIMULATION COMPARISONS

To simplify simulation processes without loss of
generality we assume that observations are made at the center
of the Earth at an infinite distance from the planet to avoid
the corrections of observed data. In this way the theoretically
computed values H can be used directly as observed data or can
be used by introducing noise with normal distribution. The
state-vector of a planetary satellite will be determined in
case (i) for a stationary planet and case (ii) for a rotating
planet by the four methods discussed herein. The principal aim
of the simulation is to show that (1) the state-vector of a
planetary artifical satellite can be accurately determined
within a few days from the Earth-based Doppler data and
(2) the generalized differential correction method can yield a
convergence range of initial estimate XO wider than the other
methods.

A. Stationary Planet

This 1s the situation corresponding to the spectro-
scopic binary star case. Excluding the general singular situ-
ations (1) when e is zero, v and t are undefined and (2) when
i is zero, 9 1s undefined, we note that the stationary planet
case has two additional "intrinsic" singular situation. The
first corresponds to the "infinite" degeneracy in the longitude
of the ascending node 9 for orbital planes of fixed inclination
i and 7 - i. Observationally this means thal any orbit with

fixed a, e, 7, i, w, and u but different & will have the same
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Doppler time history. Mathematically this observational

degeneracy 1s indicated by the fact that when i' = 0, Q drops
out of equation (11). The first partial derivatives with re-
spect to @ vanlshes but the partial state-vector (a,e,t,i,w,u)
still can be evaluated. The second singular case occurs when

. . . il .
the inclination 1 is 5 or 3%. Observationally there is no
Doppler effect in this case and mathematically %% = 0 since
%% = 0 as seen from Appendix I,

Without considering singular cases for simulation, the

following set of parameters was arbitrarily chosen for testing

and evaluating purposes:

a = 2788 km
e = 0.289

T = 0 min

i = 40°

w = 283°

L= 1.77 x 107 km3/min®

The above set of parameters is substituted in equation (11) to
compute the theoretical radial range-rate H(X). Observational
data M are simulated by truncating the theoretical value H(X)
to an appropriate number of significant filgures corresponding
to actual range-rate measurement accuracy. For the case shown
herein, we arbitrarily truncated to three significant figures
by dropping the fourth significant figure when 1t is less than
five and adding one to the third significant figure when it is
equal to or more than five. Noise pattern obtained this way
may not approach the assumed normal distribution. A proper
way of introducing noise in the theoretical data is to have a
normally distributed noise generator incorporated in the pro-

gramming. Since the actual range-rate measurement accuracy is
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better than three significant figures, the deviations of the
parameters from the true values are conservative. The results

of the simulation are shown in Table I.

Initial computations using single precision on the
Univac 1108 show that the results of iterative convergence
processes differ for slightly different initial estimates,
indicating problems in matrix inversion. When double precision
is used throughout the computations, at least the first eight
significant figures in the print-out show consistency and,
therefore, accuracy in computations. All results shown are

obtained by programming with double precision.

Table I is designed to show the initial estimate range
within which the four above-mentioned methods can converge to
the best estimate. It 1is seen that the generalized differential
correction method has the widest range and the classical differ-
entlal correction method the next. The Newton-Raphson and
generalized Newton-Raphson methods have almost the same narrow-
est range. From the results shown and the fact that the
generalized differential correction method requires much more
computer time than thne classical differential correction method
(a ratio of about 10:1) we can conclude that for any given
initial estimate XO we should generally apply the classical
differential correction method first. 1In case the classical
method fails to converge, we can then apply the generalized
differential correction method. If the generalized method also
fails to converge, tthinitial estimate XO has to be revised.

Note in Table I that =% = 0 between a = 2677.0 and a = 2677.8.
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B. Moving Planet

In this case the degeneracy in observation is removed.
For a slow moving planet the normal matrix may be 11l-
conditioned, but not singular, and the state-vector accuracy,
especially in the parameter @, increases as the number of

orbits tracked increases.

In an attempt to estimate in a minimum number of
orbits the state-vector of a satellite of a slowly moving dis-
tant planet, we realize that the near-degeneracy nature of the
parameter 9 is still a problem. For Mars during oppositions
the relative angular displacement with respect to the Earth is
less than one-half of a degree per day. The near-degeneracy
is indicated by the fact that convergence does not take place
until the initial estimates of the parameters other than @ are
very close to the desired values. To circumvent the difficulty,
we apply the observational data from the first orbit of the
satellite of a slowly moving distant planet to the stationary
planet case first and obtain an approximate partial state-
vector (a, e, 1, w, i). Using the approximate partial state-
vector thus obtained and any estimate of the parameter o, we
can quickly determine a new state-vector estimate including
the parameter Q. If it is assumed that no systematic error
is introduced in the measurements and noise is normally distri-
buted, the accuracy of the complete state-vector estimate in-
creases as (a) the number of orbits tracked increases, (b) the
number of significant figures used in the simulated measurements
increases, and (c) the data sample rate increases (to the extent

that data are not correlated). The simulation results are shown

in Table II.
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Conservative one-sigma uncertainty for range-rate
measuremént is about lO_Ll m/sec. The theoretical maximum and
minimum radial velocities of a planetary satellite of Mars
with the following parameters are about 9.039 x lO3 km/hr and
0.4228 x 103 km/hr, respectively, for data points separated by
0.9 hr:

a = 14,040 km
e = 0.7

T = 2 hr

i = 4o°

w = 30°

Q = 50°

L= 5.5637 x 1011 km3/hr

The satellite period is about 14 hrs. To match the range-rate
measurement accuracy for the case shown we can use the simu-
lated observational data to 8 and 7 significant figures,
respectively, for the maximum and minimum radial velocities.
For a data sample rate other than once every 0.9 hr., the
number of significant figures to be used for minimum radial
velocity may be reduced if the minimum is very close to a zero

crossing of the periodic Doppler shift curve.

Table II indicates that the state-vector of a plane-

tary satellite can be determined to prescribed accuracy within

a few days instead of a few months as described by Deutsch[u’SJ

in his adaptation of the spectroscopic binary star technique.

The fact that the parameter deviations drop off,but
not smoothly, as the number of data points increascs is 1 indi-
cation that the simulated noise introduced by rounding off

processes does not have a normal distribution and may have a

small bias.
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Inspection of equation (11) shows that orbits with
i,  and m - i, m - Q@ are degenerate when Q@' = 0. For plane-
tary satellites Q@' in general does not vanish and theoreti-
cally degeneracy should not be a problem.

VI. GENERAL STATISTICAL ESTIMATION CRITERION

For general cases of a rotating Earth at finite

distance from a moving planet, equation (15) becomes

A . ~ A A

- (- Z 1) = 'Ql’éi - Byezi - (M )o z; - (o4 92_)gl °éi , (b2)

where M, represents the only measured quantity of range-rate

i . -
= 0 o7 ! .
at t ti. The term (pieﬂi)gli z} can be expressed as:

The residual of equation (42) is:

:E'-’é! —D.’é! - é."\' - . i\ QA' - .A'
R =i %1 212 (Ml)ﬂi 23 0424

A

+ (éi-éi)(éi.é') = - (M, - 500 (ps02Y) (1)

The least square estimation criterion then is:

. ~ -~ ~ [ ] ~ ‘Q ~
z:(Mi'Ri'Ri)(Ri’Ei)[(Mi - Ri’ﬂi),ax ’Ew)

3p.

-laxey ¥ F.’1 Da )(p ‘2] )] ;5




BELLCOMM, INC. - 28 -
where

50  Or

3% - X (46)
and

op 1 or N 8?_),\

x-rm-elwle (47)

ar sr

It is seen that for general cases both Ey and 3% are necesg-

. ar
sary in the state-vector estimation. The components of 5%

ar

are shown in Appendix I and those of 3% are shown in Appendix
II. Second partial derivatives with respect to r have not
been evaluated, since only the classical differential correc-
tion method and generalized differential correction method
are used for general cases.

From equation (45) we note that the general least
squares estimation criterion will be reduced to the conven-

tional case if z' is taken to be p and use is made of the
ap N

orthogonality relation between X and p. Thus if é' = é,
equation (45) becomes
. (3P . 30,
. —l . —1 =
Zi:(Mi - Ri’f’—i){ax 23 * sty 0 . (48)

Simulation results for general cases using equation
(45) as a criterion are in agreement with those shown in
Tables I and II. This confirms the conclusion that in general
the longitude of the ascending node of a planetary satellite
can be determined to prescribed accuracy with a few days of

Earth-based range-rate measurements.




BELLCOMM, INC. - 29 -

Comparison of simulation results using equation (45)
with those using equation (48) for the theoretical orbital
elements and orbital orientation shown in Table II shows that
differences are in the eighth significant figure. Although
for the cases studied the state-vector estimates obtained by
using equation (45) appear to be closer to the respective
theoretical values than those obtained by using equation (48),
it is inferred that the situation is highly dependent upon the
choice of orbital elements and orbital orientation. Further

study in this respect is desirable.

VII. PERTURBATIONS DUE TO AN OBLATE PLANET

The equatorial bulge of a planet causes the orbital
plane of its satellife to regress, and the true orbit is no
longer Keplerian with constant elements but osculating with
varying elements. To take account of this perturbing effect
the analysis presented above has to be modified by simple
approximations.

Equation (1) and (2) hold true whether the orbit is
Keplerian or osculating and

2
Hetoir (49)
remains correct in the osculating sense if we let a=a(t), e=e(t),
and f be defined by the Kepler's equation (13) with t=t(t),
Q=Q(t), i=i(t), and w=w(t). It can be shown that equation (11)

remains valid for an osculating orbit if the elements a,e,t,2,1i,w

r =

are in appropriate time-varying forms. General perturbations
theory has shown that the oblateness effects of a central body on
a satellite can be expressed by a time-varying state-vector of

the satellite in terms of the spherical harmonic components of

the gravitational potential of the central body. The perturba-
tions can be grouped into (i) secular variations, (ii) long-period
variations, and (iii) short-period variations. Kozai[6]
that for the first order secular perturbation the short-period

has shown

variations in a,e, and i can be considered as time independent and
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2
3 fe J., n( Y(t=t ) = @ -9(t-t )
a(t) = Q¢ = &2 /———0u—— n(cosi - = - -
o) 2 a2(l-e2)2 2 = o o) o)
2
3 Re — 2
w(t) = wo + E T———z—'—é‘ J2 n(u—Ssin i)(t—t0>
a (l-e7)
= w_ + w(t-t ) , (50)
O o]
_ = . __Ju
m(t) = m_ + n(t—to) >, with m_ —1/;§ (tO—TO) s
where
2
R
n o=,/ [1 + 3 e 3 (2—3sin2i)] ,
a3 a2(1_e2)2 2

J2 is the value of the second harmonic component of

the central body potential,

Re is the equatorial radius of the central body, and

2, ,w,, and m  are the initial values (at t=to) from
which periodic perturbations have been removed.

Higher order secular variation terms and long-period variation
ferms involving higher order harmonic components J3, JM have
been obtained by Brouwer[7j. Since equation (50) is referred
to the planetary equatorial plane, a transformation of equation
(11) to that plane at t = to is necessary to use equation (50).
If we assume for mathematical simplicity that the "inertial"
plane XY is the planetary equatorial plane, then equation (50)
can be substituted directly into equations (11) and (13) for

the state-vector evaluation as well as the J2 evaluation.
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The exact evaluations of the partial derivatives are
considerably complicated by the presence of the terms contain-
ing J2 together with a, €, 1. For the classical differential
correction and the Newton-Raphson methods, the iteration pro-
cesses are not particularly sensitive to the partial deriva-
tives and we suspect that the partial derivatives shown in
Appendix I may be used to obtain the desired solution. For the
generalized differential correction method exact evaluations
are necessary, otherwise the integration process will not be
able to follow the solution curve. If the parameter Jn is to

be estimated, the evaluation of %%— is also necessary. To

obtain simulation results involving the perturbation effects
of an oblate planet also requires considerable revision of the
existing computer program. Other perturbing forces due to the
Sun and Earth can be incorporated in a similar fashion, when
their effects on the satellite are expressed in appropriate

time-varying form resembling equation (50).

VIII. CONCLUSIONS

The state-vector of a planetary artificial satellite
is determined by using Earth-based range-rate measurements.
The satellite velocity component in the direction from the
planet-center to Earth-center instead of that from the satel-
lite to an observation station is computed in a theoretical
model. The relatively simple least squares estimation criterion
thus obtained for the case of a planet at infinite distance
facilitates the comparison study of numerical methods of solv-
ing a system of nonlinear equations.

Simulation results obtained by programming in double
precision show that the longitude of the ascending node of a
planetary satellite can be determined to prescribed accuracy

within a few days of tracking.
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The comparison study is made among (1) classical
differential correction method, (2) Newton-Raphson method,
(3) generalized differential correction method, and (4)
generalized Newton-Raphson method. It indicates that the new
generalized differential correction method has a convergence
range of initial estimate wider than the other methods. The
extension in the convergence range of initial estimate enhances
the success of obtaining a preliminary state-vector in a short
tracking period and is particularly important in planetary
missions.

The effects of perturbations of non-central forces
on the satellite can be incorporated in the formulation with-

out resorting to numerical integration.

C. C H Taw

C. C. H. Tafg

CCHT L. Greer

1014~ CLG

-jde
Attachments

Figures 1 and 2
Tables I and II
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TABLE 1|

SIMULATION RESULTS

SAMPLING RATE: ONE EVERY FIVE MINUTES
SIMULATED MEASUREMENTS : OBTAINED BY ROUNDING OFF COMPUTED VALUES TO THREE SIGNIFICANT FIGURES.

PARAMETERS | THEORETICAL | ESTIMATED
a(KM) 2788 2787.9892
e 0.289 0.28897788
7 (MIN) 0 -0.0076632791
i (DEG) 40 40.000886
w (DEG) 283 282.97972
w(KM3/MIND) | 1.77 % 107
PERIOD (MIN)|  219.853

’ a e r i w u c.o.c. | Nk | G.NkR. [ GuD.C.
2600.0 | 0.289 | o 40 283 |1.77x 10 c X X C
| 2770 0.289 0 40 283 |1.77x 10 C X X C

2677.8 | 0.289 0 40 283 |1.77x107 C C C C
2900.0 | 0.289 0 40 283 [1.77x107 C X X C
3300.0 | 0.289 0 40 283 |1.77x 107 X X X C
2788.0 | 0.100 0 40 283 |1.77 X 107 C C C C
2788.0 | 0.230 0 40 283 |1.77x 107 C C C C
2788.0 | 0.250 0 40 283 1.7 x 10 C C c C
2788.0 | 0.500 0 40 283 [1.77x107 C c C C
2788.0 | 0.289 0 20 283 |1.77x107 C C C C
2788.0 | 0.289 0 30 283 |1.77 x 10 C C c c
2788.0 | 0.289 0 60 283 [1.77 %107 C X C C
2788.0 | 0.289 0 40 240 |1.77 x 107 c X X C
2788.0 | 0.289 0 40 20 |1.77 %107 C C X C
2788.0 0.289 0 40 30 1.7 %10 C C X C
2788.0 | 0.289 0 40 320 [1.77 %107 c X X C
2000.0 | 0.500 10 40 270 |1.77 x 10 X X X C
2500.0 | 0.250 -5 30 250 1.7 x 107 C X X C
3500.0 | 0.400 15 60 360 1.7 %107 X X X C
4000.0 | 0.400 15 60 %0 |1.77x 10 X X X c

LEGEND

C: CONVERGE TO THE ESTIMATED PARAMETERS

X: FAIL TO CONVERGE OR CONVERGE TO WRONG SOLUTION.

— F
X

C.D.C. : CLASSICAL DIFFERENTIAL CORRECTION METHOD

N.R. : NEWTON-RAPHSON METHOD

G.N.R. : GENERALIZED NEWTON-RAPHSON METHOD

G.D.C. : GENERALIZED DIFFERENTIAL CORRECTION METHOD
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APPENDIX T

Evaluations of the First and Second Partial Derivatives

N =

H=-|—% [Sin i Cos i' - Cos i Sin i' (Cos 9 Cos Q'

a(l—eg)
+ Sin @ Sin Q@')] [cos{(w+f) + e cos w]
+ [(Sin @ Cos Q' - cos 2 Sin Q') Sin 1i'] [Sin(w+f) + e Sin w]}'

Let H = K(AD, + BF_),

1
_ 2
where K =— ___£_§_
a(l-e”)
DC = C+ e Cos w; C = Cos (w+f).
FS = S + e Sin w; S = Sin (w+f).
A = Sin 1 Cos 1' - Cos i Sin 1i' (Cos Q cos Q!
+ Sin @ Sin Q').
B = (Sin 2 cos @' - Cos @ Sin Q') Sin i'.
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oH _ __H of
33 ~55 K(AS~BC) 53
3 _ _eH_ _ kr(as-Bc) 2L _ 4 cos w - B Sin o]
de 1 2 de

-e
oH _ H _ ey 2F
3; = 5 K (AS-BC) 5n
SH _ 5f
3T -K (AS-BC) 3T
oH _ oA
31 - %31 Do
2H _ (24 3B
30 - K (BQ Do * 330 Fs)'
oH
e —K(AFS - BDC).
of _ 3K (1+e Cos £)2 (t-t)
2a 2 au T
de 2

l - e
af -k >
— = —= (1 + e Cos )" (t-1)
du 2

2u

3
3f _ K 2
FE R (1 + e Cos )
%% = Cos i Cos i' + (Cos @ Cos Q' + Sin @ Sin Q') Sin i Sin i
5A . . o
3g = (Sin @ Cos Q' - Cos 2 Sin Q') Cos i Sin i
9B . . .
30 - (Cos Q@ Cos .Q'" + Sin @ Sin Q') Sin 1i?
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2 ’ 2 2

9 H H 1 3H of 1 of a  f

L= 25 - =22 Kk [(AC#BS)(52) - (AS—BC)(—— = - —)
3a2 2a2 2a 9%a ‘ toa 2a 9a aa2
2 2 2

d g = - H2 5 + 292 %g - K |(AC+BS) (-'f;—g) + (AS-BC) 5 g
de (1-e7) l-e de

2 . ( 2 ) -I
W LA B¢ facess) (3) + (as-Bo) &2; o L L))
2 2 2
3 H - x|(ac+BS) (3—11) + (as-BC) (&L
2 3T BT2
9T
2 2
2 =xk2%Dp = -KaD,.
91 i
2
B—_.I-_I. = _H
3w2
2 2
3_% =K i—% Do - BFg
a8 29
3_2£=_5_+v1f_£ n y = 2¢€ Sinf
3a 2a 3a | 3a ' where l + e cos T
3°r 1 af
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Evaluation of the First Partial Derivatilves
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where
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